

Ahmednagar Jilha Maratha Vidya Prasarak Samaj's

New Arts, Commerce and Science College, Parner

Tal. Parner, Dist. Ahmednagar - 414 302 (Maharashtra)

Course Outcome

Faculty of Science

Contents

Course Outcomes	4
1. B. Sc. Chemistry	4
F.Y.B. Sc.	4
S.Y.B.Sc.	5
T.Y.B.Sc.	6
2. M. Sc. Organic and Analytical Chemistry	11
M. Sc. I Chemistry	11
M.Sc. II Organic Chemistry	14
M.Sc. II Analytical Chemistry	17
3. B. Sc. Physics	23
F.Y.B.Sc.	23
S.Y.B.Sc.	24
T.Y.B.Sc.	25
4. M. Sc. Physics	29
M. Sc. I Physics	29
M.Sc. II Physics	31
5. B. Sc. Botany	33
F.Y.B.Sc.	33
S.Y.B.Sc.	34
T.Y.B.Sc.	35
6. M. Sc. Botany	40
M.Sc. I Botany	40
M.Sc. II Botany	42
7. B. Sc. Zoology	46
F. Y. B. Sc.	46
S. Y. B. Sc.	47
T. Y. B. Sc.	48
8. B.Sc. Mathematics	53
F. Y. B.Sc.	53
S. Y. B. Sc.	54
T. Y. B. Sc.	55

9.	M.Sc. Mathematics	61
I	M. Sc. I	61
1	M Sc. II Mathematics	63

1. B. Sc. Chemistry

F.Y.B. Sc.

CH-101: Physical Chemistry

After completion of the course students will be able to

- **CO 1:** Define laws and principles of energetics and equilibrium.
- **CO 2:** Explain the concepts of equilibrium and formulae
- **CO 3:** Make a list of mathematical formulae.
- **CO 4:** Solve numerical problems.

CH-102: Organic Chemistry

After completion of the course students will be able to

- **CO 1:** Give the chemical formulae, names and structures of chemical compounds.
- **CO 2:** Define isomerism, its types, Stereochemistry
- **CO 3:** Define Conformations, configurations and nomenclatures
- **CO 4:** Identify Functional group for aliphatic hydrocarbons
- **CO 5:** Write the reactions.

CH-201: Inorganic Chemistry

After completion of the course students will be able to

- **CO 1:** Define, atoms, molecules, particles.
- **CO 2:** Explain developments in atomic structure.
- **CO 3:** Learn the developments in Periodicity of Elements.
- **CO 4:** List the theories for chemical bonding and draw conclusions.
- **CO 5:** Draw a periodic table.

CH-202: Analytical Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Give the chemical formulae.
- **CO 3:** List the methods of expressing concentrations.
- **CO 4:** Explain the methods of preparations of solutions.
- **CO 5:** Solve the problems.

CH-103 and CH-203: Laboratory Courses

- **CO 1:** Study MSDS sheet, handle chemicals, prepare the solutions.
- **CO 2:** Perform the experiment.
- **CO 3:** Learn the principle of experiment.
- **CO 4:** Perform the calculations.
- **CO 5:** Find conclusions.
- **CO 6:** Correlate theory with practicals.

S.Y.B.Sc.

CH-301: Physical Chemistry and Analytical Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** Define rate law and rate equation.
- **CO 3:** List the equations.
- **CO 4:** Give examples, solve problems.
- **CO 5:** Calculate errors.

CH-302: Inorganic and Organic Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms and principles.
- **CO 2:** Learn the theories of bonding.
- **CO 3:** Make a list of examples and give names.
- **CO 4:** Solve the examples.
- **CO 5:** Functional group approach hydrocarbons.

CH-401: Physical and Analytical Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** List the equations.
- **CO 3:** Give examples, solve problems.
- **CO 4:** Learn the principles.

CH-402: Inorganic and Organic Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Give the chemical formulae and structures of chemical compounds.
- **CO 3:** Write the reactions.
- **CO 4:** Identify Functional group for compounds.
- **CO 5:** Solve the reactions/problems.

CH-303 and CH-403: Laboratory Courses

- **CO 1:** Prepare the solutions.
- **CO 2:** Perform the experiment.
- **CO 3:** Learn the principle of experiment.
- **CO 4:** Perform the calculations.
- **CO 5:** Find conclusions.
- **CO 6:** Correlate theory with practicals.
- **CO 7:** Write reports.

T.Y.B.Sc.

CH-501: Physical Chemistry- I

After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** List the equations.
- **CO 3:** Give examples, solve problems.
- **CO 4:** Learn the principles.

CH-502: Analytical Chemistry- I

After completion of the course students will be able to

- **CO 5:** Define the terms and concepts.
- **CO 6:** List the equations.
- **CO 7:** Give examples, solve problems.
- **CO 8:** Learn the principles.

CH-503: Physical Chemistry Practical - I

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Perform the experiment.
- **CO 3:** Learn the principle of experiment.
- **CO 4:** Perform the calculations.
- **CO 5:** Find conclusions.
- **CO 6:** Correlate theory with practicals.
- **CO 7:** Write reports.

CH-504: Inorganic Chemistry - I

- **CO 1:** Define the terms and principles.
- **CO 2:** Draw a periodic table.
- **CO 3:** Learn the theories of bonding.
- **CO 4:** Make a list of examples.
- **CO 5:** Learn the properties.
- **CO 6:** Solve the examples.

CH-505: Industrial Chemistry - I

- **CO 1:** Define the terms and principles.
- **CO 2:** Make a list of industries.
- **CO 3:** Learn the principles.
- **CO 4:** Solve the examples.
- **CO 5:** Learn the safety norms..
- **CO 6:** Manufacture of basic chemicals having household applications.

CH-506: Inorganic Chemistry Practical - I

After completion of the course students will be able to

CO 1: Prepare the solutions.

- **CO 2:** Perform the experiment.
- **CO 3:** Learn the principle of experiment.
- **CO 4:** Perform the calculations.
- **CO 5:** Find conclusions.
- **CO 6:** Correlate theory with practicals.
- **CO 7:** Write reports.

CH-507: Organic Chemistry - I

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Give the chemical formulae and structures of chemical compounds.
- **CO 3:** Write the reactions.
- **CO 4:** Identify Functional group for compounds.
- **CO 5:** Solve the reactions/problems.
- **CO 6:** Suggest the mechanisms.

CH-508: Chemistry of Biomolecules

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Give the chemical formulae and structures of compounds.
- **CO 3:** Write the reactions.
- **CO 4:** Solve the reactions/problems.
- **CO 5:** Learn the functions
- **CO 6:** Make a list of molecules involved in the life of living organisms.

CH-509: Organic Chemistry Practical-I

After completion of the course students will be able to

- **CO 1:** Prepare solutions.
- **CO 2:** Find out quantities of reactants for reactions.
- **CO 3:** Write chemical equations.
- **CO 4:** Perform the experiments.
- **CO 5:** Use of microscale equipments.

CH-510 (A): Introduction to Medicinal Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the concept of drugs and its delivery.
- **CO 3:** Make a list of drugs used.
- **CO 4:** Give the functions of drugs or medicines.
- **CO 5:** Learn of action.

CH-510 (B): Polymer Chemistry

- **CO 1:** History of Polymers.
- **CO 2:** Polymerization and types of polymers.

CO 3: Important polymers and their applications.

CH-511 (A): Environmental Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the concept of environmental chemistry.
- **CO 3:** List the chemicals causing environmental pollution.
- **CO 4:** Make list water parameters.
- **CO 5:** Identify the quality of water.
- **CO 6:** Suggest methods/remedies to avoid/minimize pollution.

CH-511 (B) : Cheminformatics

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the concept of Cheminformatics.
- **CO 3:** List the tools and softwares for searching structures and nomenclature.
- **CO 4:** Applications in interpretations of the spectra of the compounds.

CH-601: Physical Chemistry-II

After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** List the equations.
- **CO 3:** Learn the principles.
- **CO 4:** Give examples, solve problems.
- **CO 5:** Write electrochemical cells.
- **CO 6:** Draw the crystal structures.

CH-602: Physical Chemistry-III

After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** List the equations.
- **CO 3:** Learn the principles.
- **CO 4:** Give examples, solve problems.
- **CO 5:** Write equations.
- **CO 6:** Draw the structures.
- **CO 7:** Give the properties.

CH-603: Physical Chemistry Practical-II

- **CO 1:** Define the terms and laws.
- **CO 2:** List the equations.
- **CO 3:** Learn the principles.
- **CO 4:** Give examples, solve problems.
- **CO 5:** Write equations.
- **CO 6:** Draw the structures.

CO 7: Give the properties.

CH-604: Inorganic Chemistry -II

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles.
- **CO 3:** Give examples, solve problems.
- **CO 4:** Write equations.
- **CO 5:** Draw the structures.
- **CO 6:** Give the properties and suggest applications.

CH-605: Inorganic Chemistry -III

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles.
- **CO 3:** Give examples, solve problems.
- **CO 4:** Write equations.
- **CO 5:** Draw the structures.
- **CO 6:** Give the properties and suggest applications.

CH-606: Inorganic Chemistry Practical-II

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Perform the experiment.
- **CO 3:** Learn the principle of experiment.
- **CO 4:** Perform the calculations.
- **CO 5:** Find conclusions.
- **CO 6:** Correlate theory with practicals.
- **CO 7:** Write reports.

CH-607: Organic Chemistry-II

After completion of the course students will be able to

- **CO 1:** Define the terms in spectroscopy and stereochemistry.
- **CO 2:** Draw the structures.
- **CO 3:** Identify the isomers.
- **CO 4:** Learn the principles.
- **CO 5:** Interpret the spectrum.

CH-608: Organic Chemistry-III

- **CO 1:** Define the terms.
- **CO 2:** Draw the structures.
- **CO 3:** Learn the principles.
- **CO 4:** Write the reactions or Suggest mechanisms.
- **CO 5:** Make a list of different reagents.

CO 6: Classification of natural products.

CH-609: Organic Chemistry Practical-II

After completion of the course students will be able to

- **CO 1:** Prepare the reagents and solutions.
- **CO 2:** Perform the reactions.
- **CO 3:** Apply the principles.
- **CO 4:** Analyze the spectra.

CH-610 (A): Chemistry of Soil and Agrochemicals

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Identify the types of soils, pesticides.
- **CO 3:** Prepare list of methods.
- **CO 4:** Perform the calculations.
- **CO 5:** Find parameters.
- **CO 6:** Suggest suitable fertilizers.

CH-610 (B) Introduction to Forensic Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Identify the types of chemicals/compounds.
- **CO 3:** Prepare list of chemicals and methods for analysis.
- **CO 4:** Lear the principles.

CH-611(A): Analytical Chemistry-II

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles.
- **CO 3:** Make list of equations.
- **CO 4:** Suggest the method for analysis.

CH-611 (B): Chemistry of Cosmetics and Perfumes

- **CO 1:** Define the terms.
- **CO 1:** Learn the principles.
- **CO 2:** Give applications of cosmetics.
- **CO 3:** Learn the regulations for the cosmetic industry.

2. M. Sc. Organic Chemistry

M. Sc. I Chemistry

Semester-I

CHP-110, Physical Chemistry-I, Thermodynamics and Chemical Kinetics and Reaction Dynamics

After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** Learn the concepts energy, orbitals, etc.
- **CO 3:** Solve the equations.
- **CO 4:** Solve the problems.
- **CO 5:** Apply the laws.

CHI-130, Inorganic Chemistry-I, Molecular Symmetry and Chemistry of Main Group Elements

After completion of the course students will be able to

- **CO 1:** Define the terms, laws and principles.
- **CO 2:** Learn the concepts.
- **CO 3:** Perform the symmetry operations and identify the symmetry elements.
- **CO 4:** Solve the problems.
- **CO 5:** List the elements, compounds and functions.
- **CO 6:** Draw the structures.
- **CO 7:** Give applications.

CHO-150, Organic Chemistry-I, Semester - I Basic Organic Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms and principles.
- **CO 2:** Draw the structures.
- **CO 3:** Write equations.
- **CO 4:** List the reagents.
- CO 5: Identify isomers.
- **CO 6:** Suggest the use of reagents.

CHG - 190, General Chemistry-I, Theory Option-A: Introduction to Solid State of Matter

- **CO 1:** Define the terms.
- **CO 2:** Draw the structures.
- **CO 3:** List the equations.
- **CO 4:** Solve the problems.
- **CO 5:** Learn the principles.
- **CO 6:** Suggest methods.

CHG - 190, General Chemistry-I, Theory Option-B: Chemical Mathematics

After completion of the course students will be able to

- **CO 1:** Write equations.
- **CO 2:** Solve the equations.
- **CO 3:** Suggest the Functions
- **CO 4:** Solve the differential Equations

Option-C: Introduction to Chemical Biology

After completion of the course students will be able to

- **CO 5:** Define the terms.
- **CO 6:** Give the chemical formulae and structures of compounds.
- **CO 7:** Write the reactions.
- **CO 8:** Solve the reactions/problems.
- **CO 9:** Learn the functions
- **CO 10:** Make a list of molecules involved in the life of living organisms.

CHG-190, SECTION-II: Option-A: Inorganic Material Synthesis and Analysis

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Prepare the reagents and solutions.
- **CO 3:** Perform the experiment/ reactions.
- **CO 4:** Apply the principles.
- **CO 5:** Synthesis of materials.
- **CO 6:** Prepare / write reports.

Option - B: Chemical Biology-I Practical

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Prepare the reagents and samples.
- **CO 3:** Perform the experiment/ reactions.
- **CO 4:** Apply the principles.
- **CO 5:** Write/Prepare report.

CHP-107: Practical Course – I Synthesis of materials, Basic Practical Chemistry

- **CO 1:** Prepare the solutions.
- **CO 2:** Prepare the reagents and samples.
- **CO 3:** Perform the experiment/ reactions.
- **CO 4:** Write/Prepare report.
- **CO 1:** Learn the safety techniques for the handling of chemicals.

Semester-II

CHP-210, Physical Chemistry-II, Molecular Spectroscopy and Nuclear Chemistry After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** Learn the concepts.
- **CO 3:** Solve the equations.
- **CO 4:** Solve the problems/ interpret the spectra.
- **CO 5:** Apply the laws.
- **CO 6:** Learn the principles.

CHI-230, Inorganic Chemistry-II, Coordination and Bioinorganic Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Preparation of microstate table.
- **CO 3:** Evaluate/Identify term symbols.
- **CO 4:** Draw the correlations diagram, Orgel diagram and structures.
- **CO 5:** Solve the problems.
- **CO 6:** Make a list of important metals in biology and physiology.
- **CO 7:** Suggest the functions in biology.

CHO - 250, Organic Chemistry-II, Photochemistry and Spectroscopy

After completion of the course students will be able to

- **CO 1:** Learn the reactions of functional groups
- **CO 2:** Write example, suggest the reagents and mechanism.
- **CO 3:** Identify the isomers.
- **CO 4:** Identify applications of spectroscopy.

CHG - 290, General Chemistry -II, SECTION-I: Theory, Option-A: Material Characterization Technique

After completion of the course students will be able to

- **CO 1:** Define the terms and principles.
- **CO 2:** Learn the concepts.
- **CO 3:** Make a list of characterization techniques.
- **CO 4:** Interpret the spectra.

Option - B: Organometallic and Inorganic Reaction Mechanism

- **CO 1:** Define the terms and principles.
- **CO 2:** Learn the concepts.
- **CO 3:** Suggest the names.
- **CO 4:** Suggest the mechanism.
- **CO 5:** List the types of reactions.

Option- C: Introduction to Chemical Biology-II

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the concepts.
- **CO 3:** List the methods to solve the problems.
- **CO 4:** Identify the importance.
- **CO 5:** Give an interdisciplinary approach.

CHG-290, SECTION-II: Electrochemical Methods of Analysis

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Handle the instruments.
- **CO 3:** Perform the experiment/ reactions.
- **CO 4:** Write/Prepare report.
- **CO 5:** Learn the safety techniques for the handling of chemicals and equipments.

CHP-227: Practical Course-II Basic Practical Chemistry (Compulsory)

After completion of the course students will be able to

- **CO 6:** Prepare the solutions and perform the reactions.
- **CO 7:** Handle the instruments.
- **CO 8:** Write/Prepare report.
- **CO 9:** Learn the safety techniques for the handling of chemicals and equipments.
- **CO 1:** Synthesis of important inorganic materials and their characterizations.
- CO 2: Understanding of reaction kinetics in terms of the rate as well as energetics.
- **CO 3:** Use of techniques.

M.Sc. II Organic Chemistry

Semester-III

CHO – 350 Organic Reaction Mechanism and Biogenesis

After completion of the course students will be able to

- **CO 1:** Identify the functional groups and write reactions.
- **CO 2:** Learn the mechanism of reaction.
- **CO 3:** Give the rate equation.
- **CO 4:** Learn the biosynthesis of natural products and alkaloids

CHO-351 Structure Determination of Organic Compounds by Spectroscopic Methods

After completing the course students will be able to

- **CO 1:** Draw the structures.
- **CO 2:** Learn the principle.
- **CO 3:** Interpret the spectrum
- **CO 4:** Predict the reaction mechanism.
- **CO 5:** Apply the spectral methods.

IQAC, AJMVPS, New Arts, Commerce & Science College, Parner Faculty of Science

CHO-352 Stereochemistry and Asymmetric Synthesis of Organic Compounds

After completing the course students will be able to

- **CO 1:** Learn the principles, reactions and mechanism.
- **CO 2:** Learn six membered rings
- **CO 3:** Learn fused, bridged and polycyclic systems
- **CO 4:** Apply stereochemistry,

CHO-353 (B): Designing Organic Synthesis and Heterocyclic Chemistry

After completing the course students will be able to

- **CO 1:** Learn the basic strategies.
- **CO 2:** Identify the target molecules.
- **CO 3:** Apply the concept in the synthesis of natural product molecules
- **CO 4:** Give the names the nomenclature, synthetic methods and reactivity and applications of heterocyclic compounds

CHO 354 Practical - I Solvent Free Organic Synthesis

After completing the course students will be able to

- **CO 1:** Study MSDS sheet, handle chemicals, and prepare solutions.
- **CO 2:** Use techniques.
- **CO 3:** Learn Green Chemistry, Principles and applications of green chemistry
- **CO 4:** Know the importance of Green Chemistry.
- **CO 5:** Perform reactions independently.

Semester-IV

CHO-450: Chemistry of Natural Products

After completing the course students will be able to

- **CO 1:** Identify the functional groups and write reactions.
- **CO 2:** Learn the mechanism of reaction.
- **CO 3:** Give the rate equation.
- **CO 4:** Learn the biosynthesis of natural products and alkaloids
- **CO 5:** Suggest examples.

CHO-451: Organometallic Reagents in Organic Synthesis

After completing the course students will be able to

- **CO 1:** Define the terms and learn the concept.
- **CO 2:** Prepare list of reagents.
- CO 3: Use appropriate reagents.
- **CO 4:** Suggest mechanism for organometallic reactions

CHO-452(A): Concepts and Applications of Medicinal Chemistry

After completing the course students will able to

IQAC, AJMVPS, New Arts, Commerce & Science College, Parner Faculty of Science

- **CO 1:** Define the terms.
- **CO 2:** Learn the concept.
- **CO 3:** Learn the peptide synthesis in medicinal Chemistry.
- **CO 4:** Prepare list of drugs.
- **CO 5:** Suggest mechanism.
- **CO 6:** Make a list of drugs.

CHO-453: Practical-III, Section-I: Ternary Mixture Separation

After completing the course students will be able to understand

- **CO 1:** Prepare solutions and handle chemicals.
- **CO 2:** Identify the types of organic compounds.
- **CO 3:** Use of microscale equipments.
- **CO 4:** Apply the techniques.
- **CO 5:** Draw the conclusions.
- **CO 6:** Prepare reports.

Section-II: Carbohydrates Synthesis and Isolation Natural Product

After completing the course students will be able to understand

- **CO 1:** Prepare solutions and handle chemicals.
- **CO 2:** Identify the types of organic compounds.
- **CO 3:** Use of microscale equipments.
- **CO 4:** Apply the techniques.
- **CO 5:** Draw the conclusions.
- **CO 6:** Prepare reports.

Section-III: Project

After completing the course students will be able to understand

- **CO 1:** Select a problem.
- **CO 2:** Read literature and research articles.
- **CO 3:** Prepare solutions and handle chemicals.
- **CO 4:** Use of microscale equipments.
- **CO 5:** Apply the techniques.
- **CO 6:** Draw the conclusions.
- **CO 7:** Prepare reports.
- **CO 8:** Acquire the skills.

CHO-454: Practical-II: Convergent and Divergent Organic Syntheses

After completing the course students will be able to understand

- **CO 1:** Prepare solutions and handle chemicals.
- **CO 2:** Use of microscale equipments.
- **CO 3:** Apply the techniques.
- **CO 4:** Draw the conclusions.
- **CO 5:** Prepare reports.
- **CO 6:** Acquire the skills.

3. M. Sc. Analytical Chemistry

M. Sc. I Chemistry

Semester-I

CHP-110, Physical Chemistry-I, Thermodynamics and Chemical Kinetics and Reaction Dynamics

After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** Learn the concepts energy, orbitals, etc.
- **CO 3:** Solve the equations.
- **CO 4:** Solve the problems.
- **CO 5:** Apply the laws.

CHI-130, Inorganic Chemistry-I, Molecular Symmetry and Chemistry of Main Group Elements

After completion of the course students will be able to

- **CO 1:** Define the terms, laws and principles.
- **CO 2:** Learn the concepts.
- **CO 3:** Perform the symmetry operations and identify the symmetry elements.
- **CO 4:** Solve the problems.
- **CO 5:** List the elements, compounds and functions.
- **CO 6:** Draw the structures.
- **CO 7:** Give applications.

CHO-150, Organic Chemistry-I, Semester - I Basic Organic Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms and principles.
- **CO 2:** Draw the structures.
- **CO 3:** Write equations.
- **CO 4:** List the reagents.
- CO 5: Identify isomers.
- **CO 6:** Suggest the use of reagents.

CHG - 190, General Chemistry-I, Theory Option-A: Introduction to Solid State of Matter

- **CO 1:** Define the terms.
- **CO 2:** Draw the structures.
- **CO 3:** List the equations.
- **CO 4:** Solve the problems.
- **CO 5:** Learn the principles.
- **CO 6:** Suggest methods.

CHG - 190, General Chemistry-I, Theory Option-B: Chemical Mathematics

After completion of the course students will be able to

- **CO 1:** Write equations.
- **CO 2:** Solve the equations.
- **CO 3:** Suggest the Functions
- **CO 4:** Solve the differential Equations

Option-C: Introduction to Chemical Biology

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Give the chemical formulae and structures of compounds.
- **CO 3:** Write the reactions.
- **CO 4:** Solve the reactions/problems.
- **CO 5:** Learn the functions
- **CO 6:** Make a list of molecules involved in the life of living organisms.

CHG-190, SECTION-II: Option-A: Inorganic Material Synthesis and Analysis

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Prepare the reagents and solutions.
- **CO 3:** Perform the experiment/ reactions.
- **CO 4:** Apply the principles.
- **CO 5:** Synthesis of materials.
- **CO 6:** Prepare / write reports.

Option - B: Chemical Biology-I Practical

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Prepare the reagents and samples.
- **CO 3:** Perform the experiment/ reactions.
- **CO 4:** Apply the principles.
- **CO 5:** Write/Prepare report.

CHP-107: Practical Course – I Synthesis of materials, Basic Practical Chemistry

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Prepare the reagents and samples.
- **CO 3:** Perform the experiment/ reactions.
- **CO 4:** Write/Prepare report.
- **CO 5:** Learn the safety techniques for the handling of chemicals.

Semester-II

CHP-210, Physical Chemistry-II, Molecular Spectroscopy and Nuclear Chemistry After completion of the course students will be able to

- **CO 1:** Define the terms and laws.
- **CO 2:** Learn the concepts.
- **CO 3:** Solve the equations.
- **CO 4:** Solve the problems/ interpret the spectra.
- **CO 5:** Apply the laws.
- **CO 6:** Learn the principles.

CHI-230, Inorganic Chemistry-II, Coordination and Bioinorganic Chemistry

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Preparation of microstate table.
- **CO 3:** Evaluate/Identify term symbols.
- **CO 4:** Draw the correlations diagram, Orgel diagram and structures.
- **CO 5:** Solve the problems.
- **CO 6:** Make a list of important metals in biology and physiology.
- **CO 7:** Suggest the functions in biology.

CHO - 250, Organic Chemistry-II, Photochemistry and Spectroscopy

After completion of the course students will be able to

- **CO 1:** Learn the reactions of functional groups
- **CO 2:** Write example, suggest the reagents and mechanism.
- **CO 3:** Identify the isomers.
- **CO 4:** Identify applications of spectroscopy.

CHG - 290, General Chemistry -II, SECTION-I: Theory, Option-A: Material Characterization Technique

After completion of the course students will be able to

- **CO 1:** Define the terms and principles.
- **CO 2:** Learn the concepts.
- **CO 3:** Make a list of characterization techniques.
- **CO 4:** Interpret the spectra.

Option - B: Organometallic and Inorganic Reaction Mechanism

After completion of the course students will be able to

- **CO 1:** Define the terms and principles.
- CO 2: Learn the concepts.
- **CO 3:** Suggest the names.
- **CO 4:** Suggest the mechanism.
- **CO 5:** List the types of reactions.

Option- C: Introduction to Chemical Biology-II

After completion of the course students will be able to

CO 1: Define the terms.

- CO 2: Learn the concepts.
- **CO 3:** List the methods to solve the problems.
- **CO 4:** Identify the importance.
- **CO 5:** Give an interdisciplinary approach.

CHG-290, SECTION-II: Electrochemical Methods of Analysis

After completion of the course students will be able to

- **CO 1:** Prepare the solutions.
- **CO 2:** Handle the instruments.
- **CO 3:** Perform the experiment/ reactions.
- **CO 4:** Write/Prepare report.
- **CO 5:** Learn the safety techniques for the handling of chemicals and equipments.

CHP-227: Practical Course-II Basic Practical Chemistry (Compulsory)

After completion of the course students will be able to

- **CO 1:** Prepare the solutions and perform the reactions.
- **CO 2:** Handle the instruments.
- **CO 3:** Write/Prepare report.
- **CO 4:** Learn the safety techniques for the handling of chemicals and equipments.
- **CO 5:** Synthesis of important inorganic materials and their characterizations.
- **CO 6:** Understanding of reaction kinetics in terms of the rate as well as energetics.
- **CO 7:** Use of techniques.

M.Sc. II Analytical Chemistry

Semester III

CHA-390 Electrochemical and Thermogravimetric methods of chemical analysis

After completing the course students will able to understand

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles.
- **CO 3:** Compare the methods.
- **CO 4:** Solve the problems.
- **CO 5:** Suggest a suitable technique for analysis.

CHA-391 Analytical Method Development and Extraction Technique

After completing the course students will able to understand

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles.
- **CO 3:** Compare the methods.
- **CO 4:** Solve the problems.
- **CO 5:** Suggest a suitable technique for analysis.

CHA-392 Advanced Chromatographic Methods of Analysis

After completing the course students will able to understand

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles.
- **CO 3:** Compare the methods.
- **CO 4:** Solve the problems.
- **CO 5:** Suggest a suitable technique for analysis.

CHA-393(B) Analysis of Food and Controlled Substances

After completing the course students will able to understand

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles.
- **CO 3:** Compare the methods.
- **CO 4:** Solve the problems.
- **CO 5:** Suggest a suitable technique for analysis.

CHA-394: Practical I: Basics of Instrumental Methods of Chemical Analysis

After completing the course students will able to understand

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles.
- **CO 3:** Prepare the solutions.
- **CO 4:** Compare the methods.
- **CO 5:** Solve the problems.
- **CO 6:** Suggest a suitable technique for analysis.

Semester IV

CHA-490: Advanced Analytical Spectroscopic Techniques

After completing the course students will able to

- **CO 1:** Make a list of spectral techniques.
- **CO 2:** Learn the principles.
- CO 3: Interpret the spectrum
- **CO 4:** Solve the problems.
- **CO 5:** Apply the spectral methods.

CHA-491: Chemical Methods of Pharmaceuticals Analysis

After completing the course students will able to

- **CO 1:** Make a list of methods of analysis.
- **CO 2:** Learn the principles.
- **CO 3:** Solve the problems.
- **CO 4:** Apply the methods.

CHA-492: A) Laboratory Automation and Environmental Analytical Chemistry

- **CO 1:** Make a list of methods of analysis.
- **CO 2:** Learn the principles.
- **CO 3:** Solve the problems.

- **CO 4:** List the automated techniques.
- **CO 5:** Apply the methods.

Practical III CHA-493-A: Optional Analytical Chemistry Practical or Project

After completing the course students will able to understand

- **CO 1:** Define the terms and select the problem.
- **CO 2:** Use manual/library resources.
- **CO 3:** Learn the principles.
- **CO 4:** Prepare the solutions.
- **CO 5:** Relate with theory.
- **CO 6:** Prepare reports.
- **CO 7:** Suggest a suitable technique for analysis.

CCPP-4, CHA-494: Practical II: Applied Analytical Chemistry

After completing the course students will able to understand

- **CO 1:** Learn the principles.
- **CO 2:** Prepare the solutions.
- **CO 3:** Prepare reports.
- **CO 4:** Suggest a suitable technique for analysis.

4. B. Sc. Physics

F.Y.B.Sc.

Semester-I

PHY-111: Mechanics and Properties of Matter

After completion of the course students will be able to

- **CO 1:** Learn the basic concepts of physics.
- **CO 2:** Define laws and state the principles.
- **CO 3:** Learn the properties of solid like stress and strain.
- **CO 4:** Make a list of examples for the concepts.

PHY-112: Physics Principles and Applications

After completion of the course students will be able to

- **CO 1:** Learn the general structure of atom, spectrum of hydrogen atom.
- **CO 2:** Define atoms, molecules.
- **CO 3:** Learn the electromagnetic waves and its spectrum.
- **CO 4:** Identify and explain the types of electromagnetic waves and applications.

PHY-113 and PHY-123: Physics Laboratory:

After completion of the course students will be able to

- **CO 1:** Correlation between theory and experiment.
- **CO 2:** Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Handle the fundamental instruments

Semester-I

PHY-121: Heat and Thermodynamics:

After completion of the course students will be able to

- **CO 1:** Learn the concepts.
- **CO 2:** Define the terms.
- **CO 3:** Determine the units and sign conventions.
- **CO 4:** State the laws.
- **CO 5:** Apply the concept of entropy and state the law.

PHY-122: Electricity and Magnetism

After completion of the course students will be able to

- **CO 1:** Learn the concept stationary charges.
- **CO 2:** Define potential energy.
- **CO 3:** State the laws.
- **CO 4:** Solve the problems.

PHY-123: Physics Laboratory:

After completion of the course students will be able to

- **CO 1:** Correlation between theory and experiment.
- **CO 2:** Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Handle the fundamental instruments

S.Y.B.Sc.

Semester-III

PHY-231 Mathematical Methods in Physics -I

After completion of the course students will be able to

- **CO 1:** Learn differential equations.
- **CO 2:** Prepare list of equations.
- **CO 3:** Solve differential equations
- **CO 4:** Use the concepts of gradient, Divergence and Curl in Physics

PHY-232 Electronics

After completion of the course students will be able to

- **CO 1:** Compare electrical charge, electrical field, electrical potential, and magnetism.
- **CO 2:** Solve numerical problems.
- **CO 3:** Learn the network theorems.
- **CO 4:** Learn the working of transistors, Op-Amp and Basic Digital Components.

PHY-233 Physics Laboratory:

After completion of the course students will be able to

- **CO 1:** Correlation between theory and experiment.
- **CO 2:** Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Handle the fundamental instruments

Semester -IV

PHY- 241 Waves, Oscillations and Sound

After completion of the course students will be able to

- **CO 1:** Define wave motion and construct the equation
- **CO 2:** Learn the role of the wave equation and correlate with nature of wave motion.
- **CO 3:** Learn the superposition of harmonic waves.
- **CO 4:** Solving problems.

PHY-242 Optics

- **CO 1:** Learn the types of lenses
- **CO 2:** Apply lens maker formulas to design optical instruments
- **CO 3:** Learn the interference and diffraction
- **CO 4:** Apply the optical phenomena through the lab course

CO 5: Develop skills in experimental design and solving problems.

PHY-243 Physics Laboratory:

After completion of the course students will be able to

- **CO 1:** Correlation between theory and experiment.
- **CO 2:** Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Handle the fundamental instruments

T.Y.B.Sc.

Semester -V

PHY-351 Mathematical Methods in Physics -II

After completion of the course students will be able to

- **CO 1:** Learn differential equations.
- **CO 2:** Prepare list of equations.
- **CO 3:** Solve differential equations
- **CO 4:** Use the concepts of gradient, Divergence and Curl in Physics

PHY-352 Electrodynamics

After completion of the course students will be able to

- **CO 1:** Define the terms.
- CO 2: Learn the relationship between electrical charge, electrical field, electrical potential, and magnetism.
- **CO 3:** Solve numerical problems.
- **CO 4:** State and explain the laws.
- **CO 5:** Solve the problems

PHY-353 Classical Mechanics

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Correlate Optical motion and Radial motion.
- **CO 3:** Solve numerical problems.
- **CO 4:** Define Rocket motion

PHY-354 Atomic and Molecular Physics

After completion of the course students will be able to

- **CO 1:** Learn the models of atom.
- **CO 2:** Learn the fine and hyperfine structure of hydrogen atom
- **CO 3:** Solve numerical problems.
- **CO 4:** Solve the problems

PHY-355 Computational Physics

After completion of the course students will be able to

CO 1: Make a list of programming languages.

- **CO 2:** Use C language in programming.
- **CO 3:** Solve numerical problems.
- **CO 4:** Make programmes in C

PHY-356(B) Elements of Material Science

After completion of the course students will be able to

- **CO 1:** Learn and compare the crystalline and amorphous types of materials
- **CO 2:** Learn the defects and dislocations inside the materials
- **CO 3:** Solve numerical problems involving topics covered.
- **CO 4:** Learn the alloy and properties of material.

PHY-3510 SEC (H): Python Programming

After completion of the course students will be able to

- **CO 1:** Learn the language.
- **CO 2:** Write code for complex scientific computational requirement.
- **CO 3:** Use Libraries like NumPy for numeric computation
- CO 4: Use Library SciPy for scientific and technological calculations
- **CO 5:** Use Library Matplotlib for plotting of graph and its visualization.

PHY-3511 SEC (L): Physics Workshop Skill

After completion of the course students will be able to

- **CO 1:** Measure various electronic parameters using multimeter.
- **CO 2:** Measure different electrical quantities.
- **CO 3:** Analyze waveform using CRO.
- **CO 4:** Handle various instruments.

Semester -VI

PHY-361 Solid State Physics

After completion of the course students will be able to

- **CO 1:** Define lattice and its types.
- **CO 2:** Learn the Braviace Lattices in 2D and 3D
- **CO 3:** Learn the crystalline Planes, Miller indices and crystal structures
- **CO 4:** Solve various numerical problems in solid-state physics.

PHY-362 Quantum Mechanics

After completion of the course students will be able to

- **CO 1:** Define quantum mechanics.
- **CO 2:** Learn the States, operators in quantum mechanics
- **CO 3:** Study postulates of quantum mechanics
- **CO 4:** Learn the different principles and hypothesis.
- **CO 5:** Solve problems.

PHY-363 Thermodynamics and Statistical Physics

- **CO 1:** Learn the concepts of conduction, convection and radiation.
- **CO 2:** Solve numerical problems.
- **CO 3:** Learn and apply the concept of Latent Heat, Specific Heat and Thermodynamics
- **CO 4:** Make a list of different state functions in thermodynamics.

PHY-364 Nuclear Physics

After completion of the course students will be able to

- **CO 1:** Learn the properties of nucleus
- **CO 2:** Make a list of models.
- **CO 3:** Nuclear reactions to generate nuclear power.
- **CO 4:** Nuclear fission and fusion.

PHY-365 Electronics II

After completion of the course students will be able to

- **CO 1:** Learn the basic electronic components.
- **CO 2:** Identify various types of transistors, diodes and their application.
- **CO 3:** Draw operational amplifier circuits.
- **CO 4:** Solve problems.

PHY-366(R) Lasers

After completion of the course students will be able to

- **CO 1:** Define LASERs.
- **CO 2:** Explain the principles.
- **CO 3:** Learn the development of modern lasers.
- **CO 4:** Gain the basic skills of practical work with lasers.

PHY-3610(V) Solar PV System Installation Repairing and Maintenance

After completion of the course students will be able to

- **CO 1:** Learn the solar system.
- **CO 2:** Define the composition of visible light.
- **CO 3:** Learn the roof mounting of solar system for domestic purpose
- **CO 4:** Calculation of load and power for House requirements
- **CO 5:** Gain the basic skills of practical work with PV system.

PHY-3611 SEC (AC): Radiation Physics

After completion of the course students will be able to

- **CO 1:** Learn the applications of Radiation
- **CO 2:** Make a list of tools
- **CO 3:** Build skills in operating different types of radiation detectors.
- **CO 4:** Set up business
- **CO 5:** Employ their skills to develop applications of radio activity in different fields

PHY-367: Physics Practical I

After completion of the course students will be able to

CO 1: Correlation between theory and experiment.

- **CO 2:** Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Use instruments independently.
- **CO 5:** Prepare a report.

PHY-368: Physics Practical II

After completion of the course students will be able to

- **CO 1:** Correlation between theory and experiment.
- **CO 2:** Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Use instruments independently.
- **CO 5:** Prepare a report.

PHY-369: Physics Practical III – Project

- **CO 1:** Correlation between theory and experiment.
- **CO 2:** Develop the practical skills.
- **CO 3:** Use instruments independently.
- **CO 4:** Prepare a project report.

5. M. Sc. Physics

M. Sc. I Physics

Semester -I

PHYUT-111: Mathematical Methods in Physics

After completion of the course students will be able to

- **CO 1:** Explain the terms involved mathematically.
- **CO 2:** Demonstrate competence with the basic ideas of linear
- CO 3: Use the method of Laplace transforms to solve initial-value problems
- **CO 4:** Solve problems

PHYUT-112: Classical Mechanics

After completion of the course students will be able to

- **CO 1:** Learn Lagrangian and Hamiltonian formulation
- **CO 2:** State the conservation principles
- **CO 3:** Apply Newton's laws,
- **CO 4:** Learn about motion of a particle under central force field.
- **CO 5:** Solve the problems.

PHYUT-113: Quantum Mechanics

After completion of the course students will be able to

- **CO 1:** Learn the laws and assumptions of quantum mechanics.
- **CO 2:** Solve the simple problems.
- **CO 3:** Construct the wave equation for simple atoms.
- **CO 4:** Explain the time independent degenerate and non-degenerate perturbations

PHYDT-114: Electronics

After completion of the course students will be able to

- **CO 1:** Learn the principles of circuit.
- **CO 2:** Able to design the circuits using ICs.
- **CO 3:** Learn to make semiconductor devices
- **CO 4:** Apply the laws of Boolean algebra and K-map
- **CO 5:** Learn the basic electronics of logic circuits, counters, registers

PHYUT-115: Physics Practical I

- **CO 1:** Correlation between theory and experiment.
- **CO 2:** Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Use instruments independently.
- CO 5: Prepare a report.

Semester-II

PHYUT-121: Electrodynamics

After completion of the course students will be able to

- **CO 1:** Learn the theoretical foundations of electromagnetic phenomena
- **CO 2:** Solve the Maxwell equations for simple configurations
- **CO 3:** Learn the propagation of waves.
- **CO 4:** Solve the problems.

PHYUP-122: Solid State Physics

After completion of the course students will be able to

- **CO 1:** Learn the physics behind structural properties of the solids.
- **CO 2:** Modify the properties of solids aiming at objectives.
- **CO 3:** Undertake the research work in the field
- **CO 4:** Solve the problems.

PHYUT-123: Statistical Mechanics

After completion of the course students will be able to

- **CO 1:** Define microstate and macrostate
- **CO 2:** Explain the concepts of microstate and macrostate of a model system
- **CO 3:** Define entropy and free energy
- **CO 4:** Apply the machinery of statistical mechanics for calculation of properties
- **CO 5:** Apply the laws and solve the problems.

PHDT-124: Atoms and Molecules

After completion of the course students will be able to

- **CO 1:** Define atoms and molecules.
- **CO 2:** Solve the problems.
- **CO 3:** Explain the rotational spectra of molecules.
- **CO 4:** Suggest the examples for it.
- **CO 5:** Learn the rotational and vibrational energy levels of diatomic molecules.
- **CO 6:** Learn the Raman spectroscopy.

PHUP-125: Laboratory Courses

- **CO 1:** Correlation between theory and experiment.
- CO 2: Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Use instruments independently.
- **CO 5:** Prepare a report.

M.Sc. II Physics

Semester-III

PHUT-231 Physics of Semiconductor Devices

After completion of the course students will be able to

- **CO 1:** Define junctions and its types.
- **CO 2:** P-n junction devices, Hall effect, potential barrier, Depletion layer
- **CO 3:** Study different diodes, there characteristics and Applications
- **CO 4:** Solve the problems.

PHUT-232 Laser fundamentals and Applications

After completion of the course students will be able to

- **CO 1:** Explain the principles
- **CO 2:** Design of various lasers,
- **CO 3:** Explain the modes of operation and areas of applications.
- **CO 4:** Learn the principles of ultrashort pulse generation and amplification,
- **CO 5:** Understand trends of development of modern lasers,
- **CO 6:** Gain the basic skills of practical work with lasers

PHUT-233 Experimental Techniques in Physics -I

After completion of the course students will be able to

- **CO 1:** Define the principle of XRD.
- **CO 2:** Use XRD to solve the structures.
- **CO 3:** Find errors, noise which are related to Physics
- **CO 4:** Learn the magnetic and dielectric properties of solids.
- **CO 5:** Solve the problems.

PHDT-234 Physics of thin films

After completion of the course students will be able to

- **CO 1:** Learn the relationship between observation and theory
- **CO 2:** Identify the applications of modern physics.
- CO 3: Make a list of modern techniques.
- **CO 4:** Give the composition of thin films.

PHUP-235: Laboratory Courses

- **CO 1:** Correlation between theory and experiment.
- **CO 2:** Verify the laws.
- **CO 3:** Develop the practical skills.
- **CO 4:** Use instruments independently.
- **CO 5:** Prepare a report.

Semester-IV

PHUT-241 Nuclear Physics

After completion of the course students will be able to

- **CO 1:** Learn the basic properties of nucleus
- **CO 2:** List the nuclear models to study the nuclear structure properties.
- **CO 3:** Gives aspects of nuclear reactions in power generation.
- **CO 4:** Explain nuclear fission and fusion reactions.
- **CO 5:** Solve the problems.

PHUT-242 Material Science

After completion of the course students will be able to

- **CO 1:** Learn the terms in material science.
- **CO 2:** Learn the concepts of modern physics.
- **CO 3:** Identify and explain various types of defects and imperfections.
- **CO 4:** Solve the problems.

PHUT-243 Experimental techniques in physics -II

After completion of the course students will be able to

- **CO 1:** Learn and draw the structures in solids.
- **CO 2:** Determine the structures using XRD.
- **CO 3:** Learn the behaviour of electrons in solids.
- **CO 4:** Explain the synthesis methods to synthesize nano-material.
- **CO 5:** Make a list of characterization techniques.

PHDT-244 Physics of Nano-Material

After completion of the course students will be able to

- **CO 1:** Learn the basics of nano science and nanotechnology.
- **CO 2:** Synthesis and characterization of nanostructures materials.
- **CO 3:** Learn the quantum dots and electron transport.
- **CO 4:** Find the applications of nano science and nanotechnology

PHUP-245 Project

- **CO 1:** Use of skill and knowledge in conducting research
- **CO 2:** Learn the principles of measurement and error analysis
- **CO 3:** Identify the findings.
- **CO 4:** Prepare a report.

6. B. Sc. Botany

F.Y.B.Sc.

Semester I

BO-111: Plant Life and Utilization I

After completion of the course students will be able to

- **CO 1:** Learn the lower Cryptogams (Thallophytes and Bryophytes).
- **CO 2:** Know the life cycle patterns
- CO 3: Identify the applications of Algae, Fungi, Lichens and Bryophytes
- **CO 4:** Participate in field visit.

BO-112: Plant Morphology and Anatomy

After completion of the course students will be able to

- **CO 1:** Learn the importance of plant morphology
- **CO 2:** Identify the morphology of reproductive parts of plants.
- **CO 3:** Gain knowledge of various tissues and internal organization of plant body.
- **CO 4:** Explore the knowledge

BO 113: Practical Course

After completion of the course students will be able to

- **CO 1:** Correlate between practicals with theory to improve the understanding.
- **CO 2:** Participate actively in educational tour for the study of flora.
- **CO 3:** Learn the plant related practical skills.
- **CO 4:** Gain insights of research related methodology.

Semester VI

BO-121: Plant Life and Utilization-II

After completion of the course students will be able to

- **CO 1:** Collect the information of plant diversity
- **CO 2:** Gain knowledge of general characters.
- **CO 3:** Give classification.
- **CO 4:** Study life cycle of Pteridophytes, Gymnosperms and Angiosperms.

BO-122: Principles of Plant Science

After completion of the course students will be able to

- **CO 1:** Learn the fundamental concepts of plant physiology.
- **CO 2:** Gain the knowledge of cell, cell organelles and cell cycle.
- **CO 3:** Learn the nature of genetic material.
- **CO 4:** Learn the DNA replication, DNA organization in chromosome.
- **CO 5:** Explain the structure and types of RNA and application of molecular biology.

BO 123: Practical Course

After completion of the course students will be able to

- **CO 1:** Correlate between practicals with theory to improve the understanding.
- **CO 2:** Participate actively in educational tour for the study of flora.
- **CO 3:** Learn the plant related practical skills.
- **CO 4:** Gain insights of research related methodology.

S.Y.B.Sc.

Semester III

BO-231: TAXONOMY OF ANGIOSPERMS AND PLANT ECOLOGY

After completion of the course students will be able to

- **CO 1:** Gain knowledge of taxonomy.
- **CO 2:** Identify, classify and give the name.
- **CO 3:** Give comparative account of various systems of classification.
- **CO 4:** Learn various families with reference to systematic position and description.
- **CO 5:** Introduce ecology, diversity, methods of vegetation sampling and hotspots.

BO-232: PLANT PHYSIOLOGY

After completion of the course students will be able to

- **CO 1:** Learn the fundamental concepts of plant physiology.
- **CO 2:** Find importance and production technique of BGA.
- **CO 3:** Gain of knowledge of physiology of flowering.
- **CO 4:** Identify the techniques.

BO 233: PRACTICAL COURSE

After completion of the course students will be able to

- **CO 1:** Correlate between practicals with theory to improve the understanding.
- **CO 2:** Participate actively in educational tour for the study of flora.
- **CO 3:** Learn the plant related practical skills.
- **CO 4:** Gain insights of research related methodology.

Semester IV

BO-241: PLANT ANATOMY AND EMBRYOLOGY

After completion of the course students will be able to

- **CO 1:** Learn about plant anatomy with epidermal tissue and mechanical tissue system.
- **CO 2:** Gain knowledge of normal and abnormal secondary growth in Angiosperms.
- **CO 3:** Gain knowledge of embryology with respect to micro and megasporogenesis.
- **CO 4:** Gain information of flower pollination, fertilization and embryo development.

BO-242: PLANT BIOTECHNOLOGY

After completion of the course students will be able to

CO 1: Learn the concepts of plant tissue culture techniques and single cell protein.

- **CO 2:** Gain the knowledge of plant genetic engineering, genomics, proteomics and bioinformatics.
- **CO 3:** Learn the bioremediation and biofuel technology.
- **CO 4:** Use the techniques for the developments.

BO 243: PRACTICAL COURSE

After completion of the course students will be able to

- **CO 1:** Correlate between practicals with theory to improve the understanding.
- **CO 2:** Participate actively in educational tour for the study of flora.
- **CO 3:** Learn the plant related practical skills.
- **CO 4:** Gain insights of research related methodology.

T.Y.B.Sc.

Semester VI

BO 351: CRYPTOGAMIC BOTANY (ALGAE AND FUNGI)

After completion of the course students will be able to

- **CO 1:** Learn the knowledge of Lower Cryptogams.
- **CO 2:** Identify the Algal and Fungal thallus.
- **CO 3:** Study the life cycles of algae.
- **CO 4:** Identify the economic importance of algae.
- **CO 5:** Learn the symbiotic Association of Lichens, Mycorrhiza.

BO 352: ARCHEGONIATE (BRYOPHYTES AND PTERIDOPHYTES)

After completion of the course students will be able to

- **CO 1:** Gain the knowledge of Archegoniate.
- **CO 2:** Identify the Bryophytes.
- **CO 3:** Collect the knowledge of range of thallus organisation.
- **CO 4:** Study the life cycles of Bryophytes.
- **CO 5:** Compare different Bryophytes.

BO 353: Spermatophyta and Palaeobotany

After completion of the course students will be able to

- **CO 1:** Collect the information of origin of angiosperms.
- **CO 2:** Gain the knowledge of Speciation & Endemism
- **CO 3:** Learn the classifications.
- **CO 4:** Gather the information of Herbaria and Botanical Gardens.

BO 354: Plant Ecology

- **CO 1:** Learn the interrelationship between the living world and the environment.
- **CO 2:** Gain the knowledge of Biogeography.
- **CO 3:** Learn the population ecology and community ecology.
- **CO 4:** Study of biogeochemical cycles.

BO 355: Cell and Molecular Biology

After completion of the course students will be able to

- **CO 1:** Define the terms in Cell Biology
- **CO 2:** Collect the information on cell organelles.
- **CO 3:** Identify nucleus, nucleolus and nucleolar organizer and nuclear envelope.
- **CO 4:** Learn about Chromosomes.
- **CO 5:** Gets an idea of cell signalling.

BO 356: Genetics

After completion of the course students will be able to

- **CO 1:** Define genetics and terms involved in it.
- **CO 2:** Gain the insights of Mendelism and Neo Mendelism (Gene Interaction).
- CO 3: Learn the multiple alleles, linkage, recombination and crossing over and mutation.
- **CO 4:** Solve the numerical and structural alterations of chromosomes.
- **CO 5:** Learn the sex linked chromosomes.

BO 357: PRACTICAL BASED ON BO351 AND BO352

After completion of the course students will be able to

- **CO 1:** Correlate between practicals with theory to improve the understanding.
- **CO 2:** Participate actively in educational tour for the study of flora.
- **CO 3:** Learn the plant related practical skills.
- **CO 4:** Gain insights of research related methodology.

BO 358: PRACTICAL BASED ON BO353 AND BO354

After completion of the course students will be able to

- **CO 1:** Correlate between practicals with theory to improve the understanding.
- **CO 2:** Participate actively in educational tour.
- **CO 3:** Study of families Nymphaeaceae, Oleaceae, Amaranthaceae and Cannaceae.
- **CO 4:** Prepare Botanical keys by using vegetative and reproductive characters.
- **CO 5:** Study of internal and external morphology of *Gnetum* and *Pinus*.
- **CO 6:** Study of types of fossils.
- CO 7: Study of polluted water body with ref. to BOD and Study of physicochemical properties of water body.

BO 359: PRACTICAL BASED ON BO355 AND BO356

- **CO 1:** Correlate between practicals with theory to improve the understanding.
- **CO 2:** Cytological techniques-preparation of Fixatives, preparation of stains.
- **CO 3:** Isolation of nuclei and characterization.
- **CO 4:** Study of various stages of mitosis and meiosis.
- **CO 5:** Study of Chromosomes Morphology
- **CO 6:** Isolation of plant genomic DNA by suitable method.

- **CO 7:** Estimation of Plant DNA by DPA method.
- **CO 8:** Extraction and estimation of RNA by Orcinol Method.

SKILL ENHANCEMENT COURSE (BO 3510: MEDICINAL BOTANY)

After completion of the course students will be able to

- **CO 1:** Study of medicinal plants: History, Scope and Importance.
- **CO 2:** Definition and Scope of Indigenous Medicinal Sciences.
- **CO 3:** Study of Ayurveda, Siddha and Unani.
- **CO 4:** Learn the conservation of endangered and endemic medicinal plants
- **CO 5:** Propagation of Medicinal Plants.
- **CO 6:** Ethno botany and Folk medicines

BO 3511: PLANT DIVERSITY AND HUMAN HEALTH

After completion of the course students will be able to

- **CO 1:** Study of plant biodiversity, agro biodiversity and loss of biodiversity.
- **CO 2:** Study of Management of Plant Biodiversity and Conservation of Biodiversity.
- **CO 3:** Study of role of plants in relation to Human Welfare.
- **CO 4:** Prepare a list of plants.

Semester VI

BO 361: PLANT PHYSIOLOGY AND METABOLISM 1

After completion of the course students will be able to

- **CO 1:** Learn mineral nutrition.
- **CO 2:** Gain the knowledge of mechanism of photosynthesis.
- **CO 3:** Learn the respiration, types of respiration, mechanism of aerobic respiration.
- **CO 4:** Learn stomatal biology.
- **CO 5:** Gain knowledge of translocation in phloem.
- **CO 6:** Learn plant growth regulators and Photo morphogenesis.

BO 362: BIOCHEMISTRY

After completion of the course students will be able to

- **CO 1:** Learn the foundation of Biochemistry.
- **CO 2:** Define the terms involved in it.
- **CO 3:** Identify the importance of the solvent of life.
- **CO 4:** Define enzymes and learn nature of enzymes and co-factors,
- **CO 5:** Give classification and properties of enzymes.
- **CO 6:** Learn stomatal biology.
- **CO 7:** Study carbohydrates and its types
- **CO 8:** Study lipids and vitamins.

BO 363: PLANT PATHOLOGY

- **CO 1:** Learn the fundamentals of Plant Pathology.
- **CO 2:** Learn the concepts of plant pathology.

- **CO 3:** Learn the defence mechanisms.
- **CO 4:** Identify and use methods of studying plant diseases.
- **CO 5:** Learn Plant Diseases.
- **CO 6:** Learn non-Parasitic Diseases.
- **CO 7:** Learn principles of plant diseases control

BO 364: EVOLUTION AND POPULATION GENETICS

After completion of the course students will be able to

- **CO 1:** Learn the concept organic evolution.
- **CO 2:** Explain the evidence of evolution
- **CO 3:** Learn the evolution through ages.
- **CO 4:** Study population genetics and evolution.
- **CO 5:** Learn the speciation and isolating mechanisms.

BO 365: ADVANCED PLANT BIOTECHNOLOGY

After completion of the course students will be able to

- **CO 1:** Introduce biotechnology.
- **CO 2:** Study plant tissue culture.
- **CO 3:** Identify the techniques of genetic engineering and methods of gene transfer.
- **CO 4:** Learn Cryopreservation and Germplasm Conservation
- **CO 5:** Correlate the biotechnology and society
- **CO 6:** Learn about microbial biotechnology and transgenic plants.

BO 366: PLANT BREEDING AND SEED TECHNOLOGY

After completion of the course students will be able to

- **CO 1:** Define and give scope and objectives of Plant breeding.
- **CO 2:** Learn the techniques and practices of plant.
- **CO 3:** Identify and use advanced techniques in plant breeding.
- **CO 4:** Give the introduction of Seed Technology.

BO 367: PRACTICAL BASED ON BO361 AND BO362

After completion of the course students will be able to

- **CO 1:** Correlation between practical's with theory to improve the understanding.
- **CO 2:** To organize educational tour for study of flora.
- **CO 3:** To develop plant related practical skills among the students.
- **CO 4:** To imbibe research related methodology in students.
- **CO 5:** Determination of plasmolysis, stomatal index, catalase activity, photosynthesis and paper chromatography.
- **CO 6:** To demonstration physiological experiments.
- **CO 7:** To estimate of total free amino acids, proteins, RS and Vitamin C.
- **CO 8:** Qualitative tests for starch, lipids and proteins.

BO 368: PRACTICAL BASED ON BO363 AND BO364

- **CO 1:** Study the preparation of any one culture media and culture technique for isolation of plant pathogens.
- **CO 2:** Study of any two of fungal, bacterial, viral and mycoplasma diseases.
- **CO 3:** Prepare 1% Bordeaux mixture, 10% Bordeaux paste and Jivamruta.
- **CO 4:** Study of Koch's Postulates, Fungicides and Microbial pesticides.
- CO 5: Study of geological time scale, types of fossils and evidences of Organic Evolution.
- **CO 6:** Solve numerical problems.
- **CO 7:** Study of Sympatric and Allopatric speciation with suitable example.
- **CO 8:** Visit to Paleobotany Laboratory/Museum/Fossil Garden.

BO 369: PRACTICAL BASED ON BO365 AND BO366

After completion of the course students will be able to

- **CO 1:** Identify the different tissue culture techniques.
- **CO 2:** Study of the equipment's used in genetic engineering and study of GM plants.
- **CO 3:** Prepare plant based nano-particles.
- **CO 4:** Demonstrate wine production from different fruits.
- **CO 5:** Demonstrate Hybridization Techniques.
- **CO 6:** Study of pollen viability and floral morphology of crops.
- **CO 7:** Study of seed moisture, germination, purity and viability test of seed.
- **CO 8:** Study the common seed insect pest.
- **CO 9:** Visit to a Plant Breeding Research Centre/ Seed Industry.

BO 3610: NURSERY AND GARDENING MANAGEMENT

After completion of the course students will be able to

- **CO 1:** Study the different nursery management techniques.
- **CO 2:** Study of garden management and Sowing/raising of seeds and seedlings.
- **CO 3:** Prepare saplings.
- **CO 4:** Learn the marketing of saplings.

BO 3611: BIOFERTILIZERS

- **CO 1:** Study the general account of the microbes used as Biofertilizers.
- **CO 2:** Study of bacterial, algal, *Azolla* and fungal biofertilizers.
- CO 3: Study the compost and manuring w.r.t. recycling, methods, vermicomposting and applications.
- **CO 4:** Learn the marketing skills.

7. M. Sc. Botany

M.Sc. I Botany

Semester I

BOUT 111: Botany Theory Paper I - Plant Systematics I

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Types of algae and fungi
- **CO 3:** Learn the principles, and concepts.
- **CO 4:** Identify the applications.
- **CO 5:** Compare them.

BOUT 112: Botany Theory Paper II- Cell Biology

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles, and concepts.
- **CO 3:** Identify the applications.
- **CO 4:** Learn the signalling.

BOUT 113: Botany Theory Paper III-Cytogenetics, plant breeding and evolution

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles, and concepts.
- **CO 3:** Identify the applications.
- **CO 4:** Solve the problems.
- **CO 5:** Compare the theories.

BODT 114: Botany Theory paper 4-Biofertilizer and Algal Technology

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the principles, and concepts.
- **CO 3:** Identify the useful Biofertilizers.
- **CO 4:** Learn Algal Technology.

BODP 114: Botany Practical Paper 4

- **CO 1:** Define the terms.
- **CO 2:** Identify the different techniques.
- **CO 3:** Learn the principles, and concepts.
- **CO 4:** Identify the useful Biofertilizers.
- **CO 5:** Learn the different microorganisms as Biofertilizers.

BOUP 115: Botany Practical Paper 5

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Identify the morphological observations.
- **CO 3:** Learn the principles, and concepts of various algal and fungal members.
- **CO 4:** Identify the chromosomes.
- **CO 5:** Find out the chromosomes.

Semester –II

BOUT 121: Botany Theory Paper 1- Plant Systematics II

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the classification.
- **CO 3:** List the distinguishing characters.
- **CO 4:** Pteridophytes: Classification.
- **CO 5:** Learn the Gymnosperms, Pteridophytes and Angiosperms

BOUT 122: Botany Theory Paper II- Molecular Biology

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the classification.
- **CO 3:** Types of enzymes.
- **CO 4:** Types of DNA and RNA.

BOUT 123: Botany Theory Paper III- Biochemistry

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the concepts.
- **CO 3:** Aspects of Biochemistry.
- **CO 4:** Types of enzymes.
- **CO 5:** Types of biomolecules like carbohydrates, lipids and nucleic acids.

BODT 124: Botany Theory paper 4- Floriculture and Nursery Management

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the concepts.
- **CO 3:** Learn the scope and importance of floriculture.
- **CO 4:** Identify the types of Nurseries, primary requirements, site preparation,
- **CO 5:** Write the design and layout of Nurseries.

BODP 124: Practical based on BODT 124 Floriculture and Nursery Management

After completion of the course students will be able to

CO 1: Define the terms.

- **CO 2:** Learn the concepts.
- **CO 3:** Correlate theory and experiments.
- **CO 4:** Start floriculture/horticulture.
- **CO 5:** Prepare lab reports.

BOUP 125: Botany Practical Paper 5

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn different plant families of dicotyledonous and monocotyledon.
- **CO 3:** Learn Isolation and quantification of plant genomic DNA.
- **CO 4:** Use separation techniques.
- **CO 5:** Performs electrophoretic separation.
- CO 6: Use instruments or equipment's used in Molecular Biology techniques.
- **CO 7:** Prepare lab reports.

M.Sc. II Botany

BOUT 231: Botany Theory Paper I-COMPUTATIONAL BOTANY

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the concepts of Basic biostatistics concepts.
- **CO 3:** Use of Excel softwares for statistical analysis.
- **CO 4:** Learn bioinformatics and Data Retrieval tools.

BOUT 232: Botany Theory Paper II- DEVELOPMENTAL BOTANY

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the basic concepts.
- **CO 3:** Apply the concepts in lifelong learning.

BOUT 233: Botany Theory Paper III- PLANT PHYSIOLOGY

After completion of the course students will be able to

- **CO 1:** Define the terms involved.
- **CO 2:** Identify the types of soils and composition.
- **CO 3:** Identify the useful mineral elements.
- **CO 4:** Learn the photosynthesis

BODT 234: Botany Theory Paper IV- MYCOLOGY

- **CO 1:** Define the terms involved.
- **CO 2:** Identify fungi
- **CO 3:** Learn the classification of fungi.
- **CO 4:** Learn the general characters and structural variations.
- **CO 5:** Identify higher fungi.

BODP 234: Botany Practical Paper 4 (based on BODT 234)

After completion of the course students will be able to

- **CO 1:** List the equipment needed.
- **CO 2:** Prepare the medium.
- **CO 3:** Isolate aquatic and soil fungi.
- **CO 4:** Study fungi from different groups
- **CO 5:** Prepare lab reports.

BOUP 235: Botany Practical Paper (Based on BOUT 231, BOUT 232, BOUT 233)

After completion of the course students will be able to

- **CO 1:** Define the general terms.
- **CO 2:** Learn to measure the mean, mode and median, etc.
- **CO 3:** Analyze the data.
- **CO 4:** Analyze variance on the given data (ANOVA) using R/SPPS/Excel.
- CO 5: Prepare standard solutions (%, ppm, molar, normal)
- **CO 6:** Prepare lab reports.

BODT 234 d: Botany theory paper 4- Plant Biotechnology

After completion of the course students will be able to

- **CO 1:** Define the terms
- **CO 2:** Learn the application of transgenic plants
- **CO 3:** Learn Plant tissue culture technology
- **CO 4:** Types of pollution
- **CO 5:** Biotechnology And Society

BODP 234: Practical paper based on BODT 234

After completion of the course students will be able to

- **CO 1:** Isolate plant genomic DNA
- **CO 2:** Enzymatic isolation of protoplast
- **CO 3:** Biological assessment of waste water
- **CO 4:** Write lab report

Semester IV

BOUT 241: Botany Theory Paper 1- Botanical Techniques

After completion of the course students will be able to

- **CO 1:** List the techniques.
- **CO 2:** Learn the concepts of techniques.
- **CO 3:** Use different techniques.
- **CO 4:** Perform TLC and column chromatography.
- **CO 5:** Learn and use electrophoretic techniques.
- **CO 6:** Learn and use spectroscopic techniques.

BOUT 242: Botany Theory Paper II- Advanced Ecology

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the types of Ecosystem.
- **CO 3:** Learn the methods of estimating population density.
- **CO 4:** Learn the environmental impact assessment.

BODT 243: Botany Theory Paper III- Applied Mycology

After completion of the course students will be able to

- **CO 1:** Learn the colonization strategies in fungi and their ecological role
- **CO 2:** Learn the fungi as Biofertilizers.
- **CO 3:** Learn medical mycology and industrial mycology
- **CO 4:** Learn fungi as food- Mushrooms.
- **CO 5:** Identify the types of mushroom.

BODT 243d: Botany Theory Paper III- Industrial Biotechnology

After completion of the course students will be able to

- **CO 1:** Define the terms
- **CO 2:** Scope and importance of biotechnology
- **CO 3:** Fermentation technology
- **CO 4:** Bioremediation of industrial wastes
- **CO 5:** Bio-plastic in environment protection

BODP 243 based on BODT 243 Industrial Biotechnology

After completion of the course students will be able to

- **CO 1:** Isolation of Aspergillus niger
- **CO 2:** Recovery of citric acid from fermented broth
- **CO 3:** Fermentative Production of Ethanol
- **CO 4:** Preparation of Bio-plastic

BODP 244 Botany practical paper based on BODT 244

After completion of the course students will be able to

- **CO 1:** Learn to prepare Cosmetic and Herbal products.
- **CO 2:** Analyse fixed oil and phytochemical
- **CO 3:** Study different packaging methods
- **CO 4:** Identify different quality testing centre and herbal products

BODP 243: Botany Practical paper based on BODT 243

- **CO 1:** List diseases.
- **CO 2:** Study diseases of forest plants such as Powdery mildews, rots and spots.
- **CO 3:** Study post-harvest diseases or market pathogens of local market.
- **CO 4:** Isolate mycorrhizal fungi & trichoderma as Biofertilizer.
- **CO 5:** Study fungal industrial metabolites/ antibiotics with their importance.

BODT 244: Botany Theory Paper IV- Herbal Technology

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn herbal technology concept.
- **CO 3:** Identify herbal medicines, herbal cosmetics.

BODP 244: PG Dissertation

After completion of the course students will be able to

- **CO 1:** Know the research methodology.
- **CO 2:** Prepare the project report.
- **CO 3:** Write manuscript.

BOUP 245: Botany practical paper based on BOUT 241 and BOUT 242

- **CO 1:** Define the terms.
- **CO 2:** Learn the principle of Electrical conductivity and pH.
- **CO 3:** Separate the leaf pigments.
- **CO 4:** Learn various techniques.
- **CO 5:** Evaluate dissolved oxygen.
- **CO 6:** Write lab report.

8. B. Sc. Zoology

F. Y. B. Sc.

ZO-111 Animal Diversity I

After completion of the course students will be able to

- **CO 1:** Identify the animal diversity
- **CO 2:** Classify the animals and terminologies
- **CO 3:** Learn Binomial Nomenclature and Five kingdom Classification
- **CO 4:** Classify invertebrates

ZO-112 Animal Ecology

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the concept of Ecology and Ecology: Structure and composition.
- **CO 3:** Learn the characteristic of population, population regulation and interaction.
- **CO 4:** Learn community characteristics and Ecological Succession.
- **CO 5:** Identify the animal interactions, competitions,

ZO-113 Zoology Practical Courses

After completion of the course students will be able to

- **CO 1:** Learn the biological phenomenon.
- **CO 2:** Correlate theory with experiment.
- **CO 3:** Classify the various invertebrates with help of museum specimens.
- **CO 4:** Think on ecological problems.
- **CO 5:** Participate actively in field visits.
- CO 6: Identify the pests.

ZO-121 Animal Diversity II

After completion of the course students will be able to

- **CO 1:** Identify the animal diversity
- **CO 2:** Classify the animals and terminologies
- **CO 3:** Learn Binomial Nomenclature and Five kingdom Classification
- **CO 4:** Classify invertebrates

ZO-122 Cell Biology

- **CO 1:** Define the terms.
- **CO 2:** Learn the importance of Cell Biology and its application
- **CO 3:** List the applications of cell biology.
- **CO 4:** Distinguish between Prokaryotic and Eukaryotic cell.
- **CO 5:** Lear the different techniques.
- **CO 6:** Learn the structure and functions of various cell organelles.

ZO-113 and **ZO-123** Zoology Practical Courses

After completion of the course students will be able to

- **CO 1:** Learn the biological phenomenon.
- **CO 2:** Correlate theory with experiment.
- **CO 3:** Classify the various invertebrates with help of museum specimens.
- **CO 4:** Think on ecological problems.
- **CO 5:** Participate actively in field visits.
- **CO 6:** Identify the pests.

S. Y. B. Sc.

ZO-231 Animal Diversity III

After completion of the course students will be able to

- **CO 1:** Learn the vertebrate diversity.
- **CO 2:** Identify the vertebrates.
- **CO 3:** Classify the higher vertebrates.
- **CO 4:** Study the types of animals.

ZO-232 Applied Zoology I

After completion of the course students will be able to

- **CO 1:** Identify the varieties of silkworms.
- **CO 2:** Learn the techniques of silk production.
- **CO 3:** List the types of agricultural pests.
- **CO 4:** Learn the insect pests.
- **CO 5:** Suggest pest control practices.

ZO-233 Zoology Practical Courses

- **CO 1:** Learn the biological phenomenon.
- **CO 2:** Correlate theory with experiment.
- **CO 3:** Classify the various vertebrates with help of museum specimens.
- **CO 4:** Think on ecological problems.
- **CO 5:** Participate actively in field visits.
- **CO 6:** Identify the silkworm and honeybee and important agricultural pests

ZO-241 Animal Diversity IV

After completion of the course students will be able to

- **CO 1:** Learn the vertebrate diversity.
- **CO 2:** Identify the vertebrate diversity.
- **CO 3:** Learn the principles of classification.
- **CO 4:** Classify the vertebrates.
- **CO 5:** Learn the behaviours and adaptations in higher vertebrates.

ZO-242 Applied Zoology II

- **CO 1:** Learn the beekeeping tools, equipments, and beehives managements.
- **CO 2:** Collect the basic information about fishery.
- **CO 3:** Learn the preservation techniques.

ZO-233 and **ZO-243** Zoology Practical Courses

After completion of the course students will be able to

- **CO 1:** Learn the biological phenomenon.
- **CO 2:** Correlate theory with experiment.
- **CO 3:** Classify the various vertebrates with help of museum specimens.
- **CO 4:** Think on ecological problems.
- **CO 5:** Participate actively in field visits.
- **CO 6:** Identify the silkworm and honeybee and important agricultural pests

T. Y. B. Sc.

ZO-351 Pest Management

After completion of the course students will be able to

- **CO 1:** Learn the concept of Pest and Pest Management
- **CO 2:** Identify the economic, ecological, and sociological benefits of IPM.
- **CO 3:** Identify the problems due to chemical pesticides.
- **CO 4:** Identify ecological and biological characteristics in development of pest populations.
- **CO 5:** Discuss the society's role in IPM decisions.

ZO-352 Histology

After completion of the course students will be able to

- **CO 1:** Learn the histological aspects of mammalian organs.
- **CO 2:** Learn the important features of different types of tissues in organ system.
- **CO 3:** Classify the various types of basic tissues.
- **CO 4:** Predict the structure & functions of various tissues in organ system.
- **CO 5:** Learn the histological structure of various glands and its functions.

ZO-353 Biological Chemistry

After completion of the course students will be able to

- **CO 1:** Learn the basic concepts and significance of biochemistry.
- **CO 2:** Learn the basic concepts pH and Buffers.
- **CO 3:** Learn the chemical structures of carbohydrate, and their significance.
- **CO 4:** Study structure and importance of proteins and lipids
- **CO 5:** Discuss the variations in enzyme activity and kinetics.

ZO-354 Genetics

- **CO 1:** Define laws.
- **CO 2:** Learn the concept of Gene and Mendel's laws of Inheritance.

- **CO 3:** Learn the concept of Multiple Alleles
- **CO 4:** Describe mutations, their types and different types of mutagenic agents
- **CO 5:** Learn the concept behind genetic disorder, and sex determination
- **CO 6:** Explore new avenues in genetic counselling and diagnostics

ZO-355 Developmental Biology

After completion of the course students will be able to

- **CO 1:** Define the main stages of development of multicellular organisms.
- **CO 2:** Learn the order of development of multicellular organisms.
- **CO 3:** Describe the main anatomical changes that occur during development.
- **CO 4:** Identify the cellular behaviours during development.

ZO-356 Parasitology

After completion of the course students will be able to

- **CO 1:** Learn about the basics and scope of parasitology.
- **CO 2:** Describe the types of host and parasite with examples.
- **CO 3:** Describe the morphology, life cycle, pathogenicity and treatment of parasites.
- **CO 4:** Learn the host -parasite relationships and their effects on host body.
- **CO 5:** Describe the arthropod parasites and their role as vector.

ZO-357 Zoology Practical Paper 1

After completion of the course students will be able to

- **CO 1:** Learn the biological phenomenon.
- **CO 2:** Correlate the biological phenomenon learnt in the theory with experiments.
- **CO 3:** Develop the practical and experimental skills.

ZO-358 Zoology Practical Paper 2

After completion of the course students will be able to

- **CO 1:** Learn the biological chemistry.
- **CO 2:** Correlate the phenomenon with Chemistry and Genetics through experiments.
- **CO 3:** Develop the practical and experimental skills.

ZO-359 Zoology Practical Paper 3

After completion of the course students will be able to

- **CO 4:** Correlate the biological phenomenon learnt in the theory with experiments.
- **CO 5:** Identify the parasites.
- **CO 6:** Develop the practical and experimental skills.

ZO-3510 Aquarium Management

- **CO 1:** Learn the Entrepreneurial skills in ornamental fish keeping & breeding, hatchery technology, fish feed production and fish processing.
- **CO 2:** Learn aquarium setting, and aquarium accessories involved.

- **CO 3:** Create awareness about major ornamental fish diseases.
- **CO 4:** Suggest the remedies on diseases.

ZO-3511 Poultry Management

After completion of the course students will be able to

- **CO 1:** Learn the Poultry farming practices.
- **CO 2:** Learn the poultry breeding techniques.
- **CO 3:** Learn poultry rearing techniques.
- **CO 4:** Learn the feeding requirement and food ingredients.
- **CO 5:** Learn the poultry diseases and their pathogens.
- **CO 6:** Take review on market value of poultry products

ZO-361 Medical & Forensic Zoology

After completion of the course students will be able to

- **CO 1:** Learn the principles of Medical and Forensic Zoology.
- **CO 2:** List the scientific methods in crime detection.
- **CO 3:** Identify the advancements in the field of Medical and Forensic Zoology.
- **CO 4:** Learn the modern tools, techniques and skills in forensic investigations.
- **CO 5:** Describe the fundamental principles and functions of forensic science and its significance to human society.

ZO-362 Animal Physiology

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Learn the physiological organ-systems and their importance.
- **CO 3:** Learn the concepts
- **CO 4:** List the waste materials from the body.
- **CO 5:** Develop the understanding in Structure and functions of muscles
- **CO 6:** Study the formation of gametes and function of endocrine glands.

ZO-363 Molecular Biology

After completion of the course students will be able to

- **CO 1:** Learn the molecular mechanisms of various biological processes.
- CO 2: Know the structure of DNA and RNA, DNA and RNA as genetic material
- **CO 3:** Find the Central Dogma of Molecular Biology
- **CO 4:** Learn the concepts.

ZO-364 Entomology

- **CO 1:** Learn the concepts in Entomology and its scope.
- **CO 2:** Learn morphology and anatomy of Insects.
- **CO 3:** Identify diseases causing insect vectors.
- **CO 4:** Suggest the pest control methods.

ZO-365 Techniques in Biology

After completion of the course students will be able to

- **CO 1:** Learn the various concepts.
- **CO 2:** List the techniques used.
- **CO 3:** List the equipments used for field visits.
- **CO 4:** Learn the image processing.
- **CO 5:** Use specific softwares.

ZO-366 Evolutionary Biology

After completion of the course students will be able to

- **CO 1:** Learn the essential aspects of evolutionary biology.
- **CO 2:** Explain important processes, principles and concepts and critically evaluate theories and empirical research.
- **CO 3:** Apply evolutionary theory and concepts.
- **CO 4:** Investigate evolutionary questions using literature and data.
- **CO 5:** Discuss the principles, theories, problems and results of research.

ZO-367 Zoology Practical Paper 1

After completion of the course students will be able to

- **CO 1:** Correlate the biological phenomenon learnt in the theory with experiments.
- **CO 2:** Identify the aspects.
- **CO 3:** Develop the practical and experimental skills.

ZO-368 Zoology Practical Paper 2

After completion of the course students will be able to

- **CO 1:** Correlate the biological phenomenon learnt in the theory with experiments.
- **CO 2:** Identify the aspects of molecular biology and Entomology.
- **CO 3:** Develop the practical and experimental skills.

ZO-369 Zoology Practical Paper 3

After completion of the course students will be able to

- **CO 1:** Correlate the biological phenomenon learnt in the theory with experiments.
- **CO 2:** Identify the aspects of biology.
- **CO 3:** Develop the practical and experimental skills.

ZO-3610 Environmental Impact Assessment

- **CO 1:** Describe impact of pollution on environment.
- **CO 2:** Learn the concept of sustainable development.
- **CO 3:** Describe UN 17 Sustainable Development Goals (SDGs).
- **CO 4:** Describe various environment protection acts
- **CO 5:** Explain the concepts about the Environmental Impact Assessment (EIA).
- **CO 6:** Describe the process of EIA.

CO 7: List the subjects which must be considered in EIA projects.

ZO-3611 Project

- CO 1: Develop the Laboratory skills.
 CO 2: Design the experimental setup.
- CO 3: Conduct field work.
 CO 4: Identify the findings.
 CO 5:
- **CO 5:** Prepare a report.
- **CO 6:** Aware of plagiarism and research ethics.

9. B.Sc. Mathematics

F. Y. B.Sc.

Semester-I

MT111-Algebra

After completion of the course students will be able to

- CO 1: Define the terms.
 CO 2: Learn the concepts.
- **CO 3:** Describe the methods of solving division algorithm and its solution.
- **CO 4:** Explain algebraic properties of integers, finding GCD by Euclidean algorithm,
- **CO 5:** Solve the problems.
- **CO 6:** Solve the relations.

MT112-Calculus-I

After completion of the course students will be able to

- **CO 1:** Define the terms and give examples of calculus.
- **CO 2:** Describe the concepts.
- **CO 3:** Solve the examples.
- **CO 4:** Illustrate the concept of Limit, Continuity.
- **CO 5:** Classify and apply the concept of properties of Real Number.

MT113-Mathematical Practical Course

After completion of the course students will be able to

- **CO 1:** Getting the knowledge of basic of maxima software.
- **CO 2:** Calculate GCD of 2 numbers using Euclidean algorithm.
- **CO 3:** Solve examples of polynomial.
- **CO 4:** Plot functions in 2D and plots in 3D.

Semester-II

MT121-Analytical Geometry

- **CO 1:** Define the terms: Conic, Translation, Rotation, Centre, D.C.S., D.R.S.
- **CO 2:** Explain the concepts of Planes, Lines, and Spheres.
- **CO 3:** List the equations.
- **CO 4:** Solve the problems.
- CO 5: Calculate shortest distance between skew lines, radius, center of sphere and angle between planes and lines, cylinder, cone.
- **CO 6:** Give the diagrammatic representation of various concepts in analytical geometry.

MT122-Calculus-II

After completion of the course students will be able to

- **CO 1:** Define the terms and state the rules.
- **CO 2:** Correlate the concepts.
- **CO 3:** Describe the concepts.
- **CO 4:** Solve tricky examples.

MT123-Mathematics Practical

After completion of the course students will be able to

- **CO 1:** Solve the problems of Geometry and Calculus using Maxima software.
- **CO 2:** Draw 3 Dimension figures.
- **CO 3:** Learn the command of Maxima software.
- **CO 4:** Use various Maxima software command.

S. Y. B. Sc.

Semester-III

MT 231: Calculus of several variables

After completion of the course students will be able to

- **CO 1:** Find limit of functions
- **CO 2:** Plot graphs.
- **CO 3:** Solve the problems.
- CO 4: Learn the extreme value of Function, Second derivative test, Lagrange Multipliers.
- **CO 5:** Define the terms and give proofs.

MT-232 (A): Numerical Methods and its Applications

After completion of the course students will be able to

- **CO 1:** Define Basic concepts of operators
- **CO 2:** Find the Difference of polynomial.
- **CO 3:** Solve problems.
- **CO 4:** Derive the formulae.
- **CO 5:** Distinguish the rules.

MT-233: Mathematics Practical

- **CO 1:** List the softwares.
- **CO 2:** Learn and install Software in Desktop Mobile devices.
- **CO 3:** Troubleshoot the problems using Maxima Software.
- **CO 4:** Solve the problems.
- CO 5: Plot the graphs, charts.

Semester-IV

MT-241: Linear algebra

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Discuss the linear transformations, rank, nullity.
- **CO 3:** Learn and recall the theorems.
- **CO 4:** Solve the problems/equations.

MT-242 (A): Vector Calculus

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Describe the concept.
- **CO 3:** Learn and recall the theorems.
- **CO 4:** Solve the problems/equations.

MT-243 Mathematics Practical

After completion of the course students will be able to

- **CO 1:** List the softwares.
- **CO 2:** Learn and install Software in Desktop Mobile devices.
- **CO 3:** Troubleshoot the problems using Maxima Software.
- **CO 4:** Solve the problems.
- CO 5: Plot the graphs, charts.

T. Y. B. Sc.

Semester - V

MT 351 Metric Spaces

After completion of the course students will be able to

- **CO 1:** Learn the concepts of metric Spaces.
- **CO 2:** Correlate the concepts to counter parts in metric analysis using examples.
- **CO 3:** Prepare the background knowledge for advanced courses.
- **CO 4:** Evaluate the abstracts.

MT: 352 Real Analysis-I

- **CO 1:** Define the terms.
- **CO 2:** Evaluate limits.
- **CO 3:** Recognize the functions.
- CO 4: Use the ratio, root, alternating series and limit comparison tests for convergence and absolute Convergence of an infinite series of real numbers.
- **CO 5:** Classify the sequence is bounded, tinbounded, Oscillatory.

CO 6: Solve the Absolute and conditional convergence of series.

MT-353 Group Theory

After completion of the course students will be able to

- **CO 1:** Define the terms and learn the concepts.
- **CO 2:** Classify the groups.
- **CO 3:** Analyze the consequences theorem.
- **CO 4:** Learn the structure preserving maps and consequences.
- **CO 5:** Explain the significance of the notation of groups.

MT-354 Ordinary Differential Equations

After completion of the course students will be able to

- **CO 1:** Learn the genesis of ordinary differential equation
- **CO 2:** Learn various techniques to solve differential equations.
- **CO 3:** Learn the concept of general solutions.
- **CO 4:** Compare different methods of solving differential equation.

MT 355 (A): Operation Research

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Collect the models of real life situations.
- **CO 3:** Solve linear programming models of real-life situations.
- **CO 4:** Solve the problems.
- **CO 5:** Discuss the relationships.
- **CO 6:** Compare the methods of operations Research.

MT 356 B: Number Theory

After completion of the course students will be able to

- **CO 1:** Solve the problems.
- **CO 2:** Classify the methods.
- **CO 3:** Illustrate one method for solving number theory.
- **CO 4:** Analyze the methods in number theory.
- **CO 5:** Explain the fundamental concepts.

MT-357 Practical Course Lab-1

After completion of the course students will be able to

- **CO 1:** Solve the properties of Real numbers.
- **CO 2:** List the methods.
- CO 3: Choose the method for class l^2 example.
- **CO 4:** List properties of metric space, convergent sequences, Cauchy sequences.
- **CO 5:** Apply compactness property to solve examples.

MT358 Practical Course Lab-II

- **CO 1:** List the methods for solving differential equations.
- **CO 2:** Illustrate one method for solving differential equations.
- **CO 3:** Choose appropriate method for solving ODE.
- **CO 4:** List the groups.
- **CO 5:** Solve the problems.

MT359 Practical Course Lab-III

After completion of the course students will be able to

- **CO 1:** List the methods for solving number theory.
- **CO 2:** Illustrate one method.
- **CO 3:** Choose appropriate method for solving number theory.
- **CO 4:** Compare methods of Operation Research
- **CO 5:** Analyse the method in operation Research
- **CO 6:** Apply the method for solving examples in Number theory.
- **CO 7:** Discuss examples on Congruence.

MT-3510 Programming in Python

After completion of the course students will be able to

- **CO 1:** Explain the basic principles
- **CO 2:** List the programming languages.
- **CO 3:** Learn the python.
- **CO 4:** Write programme.
- **CO 5:** Apply iterations and conditional statements.

MT-3511 LATEX for Scientific writing

After completion of the course students will be able to

- **CO 1:** Learn the latex language.
- **CO 2:** Write a simple Latex input document based on the article class.
- **CO 3:** Convert the input document into pdf with the pdf latex program.
- **CO 4:** Check the syntax.
- **CO 5:** Present data using tables.

Semester-VI

MT-361 Complex Analysis

- **CO 1:** Define the terms.
- **CO 2:** Learn the concepts.
- **CO 3:** Learn the significance of complex functions.
- **CO 4:** Evaluate the contour integrals.
- **CO 5:** Relate it with Cauchy Integral Formula.
- **CO 6:** Use some simple functions.
- **CO 7:** Represents functions as Taylors, powers and Laurent's Series.
- **CO 8:** Classify singularities and solve examples.

MT-362 Real Analysis –II

After completion of the course students will be able to

- **CO 1:** Define the terms
- **CO 2:** Learn Some functions and their properties.
- **CO 3:** Learn the convergence of sequence of functions.
- **CO 4:** Solve the example on convergence functions.

MT-363 Ring Theory

After completion of the course students will be able to

- **CO 1:** Explain the fundamental concepts.
- **CO 2:** Solve the examples by using theorems.
- **CO 3:** Learn the significance of UFD and ID.
- **CO 4:** Illustrate the theorem on UID, PID and Factor Ring.

MT-364 Partial Differential Equation

After completion of the course students will be able to

- **CO 1:** Define concepts in PDE by giving examples.
- **CO 2:** Formulate and classify partial differential equation.
- **CO 3:** Solve the examples using various methods.
- **CO 4:** Illustrate the theorem in PDE.

MT-365 (A) Optimization Techniques

After completion of the course students will be able to

- **CO 1:** Explain the fundamentals concepts in OT.
- **CO 2:** Solve sequencing problems for various Jobs and Machines.
- **CO 3:** Compare the methods in OT.
- **CO 4:** Classify the methods and apply the concept for solving problems.

MT-366(B) Computational Geometry

After completion of the course students will be able to

- **CO 1:** Construct the algorithms for simple geometrical problems.
- **CO 2:** Characterize invariance properties.
- **CO 3:** Describe and construct the basic geometric shapes and concept.
- **CO 4:** Solve examples on transformations.

MT-367Practical Course Lab-I

After completion of the course students will be able to

- **CO 1:** Solve the examples by using theorems.
- **CO 2:** Determine the Singularities and it's Types
- **CO 3:** Solve improper integral of first kind and second kind
- **CO 4:** Solve the example on convergence functions.

MT 368 Practical Course Lab-II

- **CO 1:** List examples of rings, subrings, integral domains
- **CO 2:** Solve the examples of rings.
- **CO 3:** Apply Jacobean method for solving PDE.
- **CO 4:** Solve examples using theorems.

DSE-6 MT 369 Practical Course Lab-III

After completion of the course students will be able to

- **CO 1:** Learn all definition and basic concepts.
- **CO 2:** Compare the methods in OT.
- **CO 3:** Solve examples on transformations.
- **CO 4:** Solve examples by using algorithms.

SEC-III MT-3610 Programming in Python –II

After completion of the course students will be able to

- **CO 5:** Explain the basic principles.
- **CO 6:** List the programming languages.
- **CO 7:** Solve the Programmes
- **CO 8:** Construct programmes.

SEC-IV MT-3611 Mathematics into Latex

- **CO 1:** Type and set Mathematical Formulas.
- **CO 2:** Import figures and pictures that are stored in external files.
- **CO 3:** Solve the equations using mathematical operators.
- **CO 4:** Define the new commands and new involvements.

10. M.Sc. Mathematics

M. Sc. I

Semester I

MTUT 111: Linear Algebra

After completion of the course students will be able to

- **CO 1:** Recall the basic concepts in linear algebra.
- **CO 2:** Classify the types of Vector space.
- **CO 3:** Solve examples in algebra.
- **CO 4:** Prove the theorems.

MTUT112: Real Analysis

After completion of the course students will be able to

- **CO 1:** Define the concepts in real analysis.
- **CO 2:** Illustrate the theorems.
- **CO 3:** Describe properties of measure.
- **CO 4:** Solve the examples by using theorems.

MTUT113: Group Theory

After completion of the course students will be able to

- **CO 1:** Recall the concept of group theory.
- **CO 2:** Classify types of groups.
- **CO 3:** Describe the properties of groups.
- **CO 4:** Solve the examples.

MTUT 114: Advanced Calculus

After completion of the course students will be able to

- **CO 1:** Define the concepts of advanced calculus.
- **CO 2:** Compare concept of integrals.
- **CO 3:** Illustrate the theorems.
- **CO 4:** Identify the methods for solving example of Integral.

MTUT 115: Ordinary Differential Equation

- **CO 1:** Define the terms.
- **CO 2:** Choose appropriate method for solving ODE.
- **CO 3:** Prove theorems of ODE.
- **CO 4:** Solve examples by using theorems.

Semester II

MTUT 121: Complex Analysis

After completion of the course students will be able to

- **CO 1:** Define the basic concepts of complex analysis.
- **CO 2:** Evaluate the contour integrals.
- **CO 3:** Solve examples on Contour Integration, Zero and Poles.
- **CO 4:** Illustrate the theorems.
- **CO 5:** Classify the types of Singularities.

MTUT122: General Topology

After completion of the course students will be able to

- **CO 1:** Define the concept of topology.
- **CO 2:** Solve the examples of topology.
- **CO 3:** Illustrate the theorems.
- **CO 4:** Classify the concept of compact Space, Topological space, Connected Space.

MTUT 123: Ring Theory

After completion of the course students will be able to

- **CO 1:** Explain the fundamental concepts.
- **CO 2:** Solve the examples by using theorems.
- **CO 3:** Learn the significance of UFD, ID, PID, FD and ED.
- **CO 4:** Illustrate the theorem on ring.

MTUT124: Advanced Numerical Analysis

After completion of the course students will be able to

- **CO 1:** Define the concepts of numerical by giving examples.
- **CO 2:** Solve the problems in numerical analysis.
- **CO 3:** Determine Eigen values and Eigen vectors.
- **CO 4:** Illustrate the theorems.

MTUT125: Partial Differential Equations

- **CO 1:** Recall the basic concept in Partial Differential Equation
- **CO 2:** Solve examples of partial differential equation using various methods.
- **CO 3:** Illustrate the theorems.
- **CO 4:** Classify the various methods.

M.Sc. II Mathematics

Semester III

MTUT 131: Functional Analysis

After completion of the course students will be able to

- **CO 1:** Define the terms by giving examples.
- **CO 2:** List the operators.
- **CO 3:** Learn the concept of all operators in Functional Analysis.
- **CO 4:** Use of operators for solving problems.
- **CO 5:** Illustrate theorems.

MTUT 132: Field Theory

After completion of the course students will be able to

- **CO 1:** Define the terms by giving examples.
- **CO 2:** Illustrate theorems
- **CO 3:** Solve problems using theorems.
- **CO 4:** Find the order of Galois group.

MTUT 133: Programming with Python

After completion of the course students will be able to

- **CO 1:** Learn the language.
- **CO 2:** Explain various concepts.
- **CO 3:** Construct the mathematical equations.
- **CO 4:** Solve examples using Python Programming.

MTUT 134: Discrete Mathematics

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Solve the examples by using algorithms.
- **CO 3:** Explain the concepts.
- **CO 4:** Illustrate the theorems.

MTUT 135: Mechanics

- **CO 1:** Define the terms.
- **CO 2:** Solve the examples.
- **CO 3:** Explain the concepts.
- **CO 4:** Illustrate the theorems.

Semester IV

MTUT 141: Fourier series and Boundary Value Problems

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Solve the examples.
- **CO 3:** Explain the concepts.
- **CO 4:** Illustrate the theorems.

MTUT 142: Differential Geometry

After completion of the course students will be able to

- **CO 1:** Explain the concepts in Graphs.
- **CO 2:** Illustrate examples on Graphs.
- **CO 3:** Draw level curves of function using graphs.
- **CO 4:** Illustrate the theorems.

MTUT 143: Introduction to Data Science

After completion of the course students will be able to

- **CO 1:** Learn the Data Science in a big data world.
- **CO 2:** Classify the data, machine learning.
- **CO 3:** Learn the data processing.
- **CO 4:** Solve the problems.

MTUT: 144 Number Theory

After completion of the course students will be able to

- **CO 1:** Define the terms.
- **CO 2:** Solve the problems using theorems.
- **CO 3:** Illustrations of theorems.
- **CO 4:** Identify the types of congruence.
- **CO 5:** Explain the concepts: congruence.

MTUT 148: Probability and Statistics

- **CO 1:** List the types of probabilities.
- **CO 2:** Solve the problems on probability distributions.
- **CO 3:** Identify linear regression and correlation, random variable, Probability.
- **CO 4:** Differentiate distributions.